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Two new adaptor-related protein complexes, AP-3 and AP-4,
have recently been identified, and both have been implicated in
protein sorting at the trans-Golgi network (TGN) and/or
endosomes. In addition, two families of monomeric proteins
with adaptor-related domains, the GGAs and the stoned B
family, have also been identified and shown to act at the TGN
and plasma membrane, respectively. Together with the two
conventional adaptors, AP-1 and AP-2, these proteins may act
to direct different types of cargo proteins to different post-
Golgi membrane compartments. 
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Abbreviations
AP adaptor protein
ARF ADP-ribosylation factor 
GGA Golgi-localized, γ ear-containing, ARF-binding protein
TGN trans-Golgi network

Introduction 
The AP-1 and AP-2 adaptor protein (AP) complexes are
components of clathrin-coated vesicles associated with the
trans-Golgi network (TGN) and plasma membrane,
respectively. They attach the clathrin to the membrane,
select the vesicle cargo and recruit accessory proteins that
regulate vesicle formation. Both adaptor complexes are
heterotetramers, with two large subunits (γ and β1 in the
AP-1 complex, α and β2 in the AP-2 complex), a medium-
sized or µ subunit and a small or σ subunit. The two
complexes are believed to have similar structures, resem-
bling Mickey Mouse, with a core or ‘head’ consisting of the
medium and small subunits and the amino-terminal
domains of the two large subunits, flanked by two ‘ears’
consisting of the carboxy-terminal domains of the two large
subunits, connected by flexible hinges (Figure 1).

The different subunits of the AP complexes perform differ-
ent functions. The β subunits are particularly important for
clathrin binding [1,2], and clathrin-binding consensus
sequences (L[L,I][D,E,N][L,F][D,E]) have been identified
in the hinge domains of both β1 and β2 [3]. In addition,
there is some evidence that the β ears [4] and the hinge
domains of the γ and α subunits [5,6] also contribute to
clathrin binding. The µ and β subunits have been implicated
in cargo selection. Three distinct sorting signals for selection
into clathrin-coated vesicles have been identified in the

cytoplasmic tails of certain transmembrane proteins: NPXY,
YXXØ (where Ø is a bulky hydrophobic residue) and
dileucine [7]. Of these, the best characterized is the YXXØ
signal, and this sequence binds to the µ subunits of both
AP-1 and AP-2 [8,9]. Crosslinking studies suggest that
dileucine signals bind to the β subunits [10]. The α and β
ears [4,11], and presumably the γ ear as well [12], recruit
accessory proteins onto the membrane, where they partici-
pate in events such as vesicle scission and vesicle uncoating.

The search for novel adaptors
Proteins containing NPXY, YXXØ and dileucine sorting
signals can have very different steady state distributions in
the cell and can be localized at the plasma membrane,
recycling endosomes, late endosomes, lysosomes and the
TGN, as well as at more specialized organelles such as
melanosomes and synaptic vesicles. Studies from a num-
ber of laboratories have demonstrated that these sorting
signals not only act as internalization signals when the 
proteins are at the plasma membrane, they also help to
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Figure 1

Schematic diagrams of the four AP complexes. All four complexes
consist of two large subunits: a β subunit and a more divergent
subunit, either γ, α, δ or ε; a medium (µ) subunit; and a small (σ)
subunit. The carboxy-terminal domains of the two large subunits
project as ‘ears’, connected to the ‘head’ of the complex by flexible
hinges. Yeast two-hybrid experiments have shown that the γ/α/δ/ε
subunits interact with the σ subunits, that the β subunits interact with
the µ subunits and that the two large subunits interact with each other.
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determine the proteins’ trafficking itineraries and steady
state distributions inside the cell [7]. Thus, it became
apparent several years ago that only two adaptors, one for
TGN to endosome traffic and one for plasma membrane to
endosome traffic, are not sufficient to explain all the other
post-Golgi sorting events that use NPXY, YXXØ or
dileucine signals.

The hypothesis that there must be additional adaptors or
adaptor-related proteins prompted the search for homo-
logues of known AP subunits. Although early strategies
involving PCR or low stringency library screening proved
to be unsuccessful, over the past five years the explosion of
new DNA sequence data, particularly from the human
EST (expressed sequence tag) database, has made it pos-
sible to search by computer for novel members of each of
the four adaptor subunit families. With the complete
sequencing of the Saccharomyces cerevisiae, Caenorhabditis
elegans, Drosophila melanogaster and human genomes, we
now know of the existence of three types of adaptor-relat-
ed proteins. First, some of the AP-1 and AP-2 subunits
exist as two or more distinct isoforms, encoded by different
genes. It has long been known that in mammals there are
two isoforms of the AP-2 α subunit, although no clear-cut
functional differences between them have been reported
[13]. More recently it has been found that in mammals
there are also two isoforms of the AP-1 γ, µ1 and σ1 sub-
units. At present the functional significance of the two γ
and σ1 subunits is unclear [14,15]; however, the second µ1
subunit, µ1B, has been well characterized. Unlike the
other AP-1 and AP-2 subunit genes, which are all
expressed ubiquitously, µ1B is specifically expressed in
epithelial cells [16], and it plays an important role in 
trafficking to the basolateral plasma membrane [17,18]. 

In addition to the novel isoforms of known subunits, which
(as far as we know) can assemble into variants of the AP-1
and AP-2 complexes, there are also two new complete
complexes, AP-3 and AP-4. These complexes are also het-
erotetramers consisting of two large subunits, a medium
subunit and a small subunit (Figure 1). Finally, two fami-
lies of monomeric adaptor-related proteins with homology
to AP subunit domains have been identified: the GGA
family and the stoned B family. This review will focus on
AP-3, AP-4, the GGAs and stoned B.

AP-3
The first AP-3 component to be identified was its µ sub-
unit, which was found somewhat serendipitously in an
expression library screen. Two isoforms of this protein,
p47A and p47B, were identified in rat that had distinct
expression profiles, with p47A (later renamed µ3A)
expressed ubiquitously and p47B (µ3B) expressed only in
neurons and neuroendocrine cells [19]. Later, an isoform of
the AP-3 β subunit was reported, β-NAP (for neuronal
adaptin-like protein) [20], and a subsequent study revealed
that p47 and β-NAP could be coimmunoprecipitated, indi-
cating that they are part of the same complex [21]. The

remaining subunits of the complex, δ (homologous to γ and
α) and σ3 (two isoforms, both expressed ubiquitously), as
well as a ubiquitously expressed β subunit (β3A, with
β-NAP renamed β3B), were all found in the EST database
[22–25]. Antibodies against the subunits showed that they
all associate with each other and that they localize to the
TGN and to a more peripheral compartment that partly
colocalizes with endosomal markers [21–23].

AP-3 mutants
Studies on AP-3 function were greatly facilitated by the
discovery of naturally occurring AP-3 mutants in
Drosophila, mouse and humans, and by the creation of
AP-3 mutants in yeast. Four of the classical Drosophila eye
colour mutants, garnet, ruby, carmine and orange, are in
genes encoding the AP-3 δ, β3, µ3 and σ3, subunits respec-
tively [23,25–29]. These belong to the granule group of
genes, which also includes Drosophila homologues of the
yeast vacuolar protein sorting (VPS) genes VPS18 (deep
orange), VPS33 (carnation) and VPS41 (light). The pheno-
type of the granule group of eye colour mutants, together
with the discovery that some of the granule group genes
have yeast VPS gene homologues, suggested that all of
these genes, including those encoding AP-3 subunits,
might be involved in trafficking to lysosomes and related
organelles [30]. 

This hypothesis was confirmed when mammalian AP-3
mutants were identified. Two mouse models for the human
genetic disorder Hermansky-Pudlak syndrome (HPS),
mocha and pearl, have mutations in the AP-3 δ and β3A
subunits, respectively [31,32•]. Subsequently, two human
HPS patients with mutations in the β3A gene were identi-
fied [33•]. Both the mice and the humans have defects in
lysosomes and lysosome-related organelles, in particular in
their melanosomes and platelet dense granules, leading to
a number of problems including hypopigmentation, pro-
longed bleeding and pulmonary fibrosis. Remarkably,
however, especially in the case of the mocha mouse, which
has a null mutation in the δ subunit and no functional AP-3
whatsoever [31], both the mice and the humans survive to
adulthood. This is in marked contrast to mice with AP-1
subunit knockouts, which are embryonic lethal [34,35]. 

AP-3-mediated trafficking 
Although AP-3 is clearly involved in trafficking to lyso-
somes, the precise pathway that it mediates is still not
clear. The major missorting defect that has been observed
in AP-3 deficient mammalian tissue culture cells is that
certain lysosomal membrane proteins, including lamp-1,
lamp-2, limp-2 and CD63, show increased trafficking via
the plasma membrane, although their steady state distrib-
ution is still mainly lysosomal [33•,36,37]. When AP-3
subunits are deleted in yeast, two vacuolar membrane pro-
teins, alkaline phosphatase and Vam3p, are missorted,
although the vacuolar hydrolase carboxypeptidase Y (CPY)
is sorted correctly [38,39]. In contrast, most of the classical
yeast vps mutants, which were originally identified as
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defective in CPY sorting, sort alkaline phosphatase cor-
rectly, indicating that different molecules use different
pathways to get to the vacuole. The observation that vps
mutants that specifically affect trafficking through a pre-
vacuolar compartment are still able to sort alkaline
phosphatase has led to the proposal that the AP-3 pathway
takes proteins directly from the late Golgi to the vacuole or
lysosome, bypassing any sort of endosomal intermediate
[40]. One problem with this hypothesis, when applied to
mammalian cells, is that much of the AP-3 is not localized
to the TGN but to a more peripheral endosomal compart-
ment [3,21–23]. However, it is possible that the AP-3
pathway uses a different endosomal intermediate from the
‘conventional’ pathway. 

It is not clear why certain organelles, such as melanosomes
and platelet dense granules, are more strongly affected
than lysosomes in AP-3 deficient mammals. This may be
because of more extreme missorting of some of the pro-
teins that normally reside in these organelles or
alternatively because organelles may be more sensitive to
subtle differences in sorting efficiency. Other mouse mod-
els for HPS that have a similar overall phenotype,
including pale ear (the mouse orthologue of the human
HPS1 gene), do not show the characteristic rerouteing of
lysosomal membrane proteins to the plasma membrane
[37], indicating that the proteins encoded by these genes
are not components of the AP-3 vesicle budding machin-
ery, but probably act at some other trafficking step. The
genes mutated in the pallid and gunmetal mouse strains
have recently been cloned and encode a syntaxin-13-inter-
acting protein and the rab geranylgeranyltransferase α
subunit respectively [41,42], indicating that they facilitate
vesicle docking and fusion rather than vesicle budding. 

Another question is whether the AP-3 vesicles are clathrin-
coated. The AP-3 β3A and β3B subunits both contain
clathrin-binding consensus sequences in their hinge/ear
domains, and both bind to clathrin in vitro [3]. In addition,
the clathrin amino-terminal domain has been cocrystal-
lized with a β3A subunit derived clathrin-binding peptide
[43], and AP-3 recruits clathrin assembly onto synthetic
liposomes [44]. However, AP-3 is not enriched in purified
clathrin-coated vesicles [20,21], and deleting AP-3 subunit
genes in yeast has a completely different phenotype from
deleting clathrin heavy or light chain genes [38].
Furthermore, an in vitro system that reconstitutes the bud-
ding of synaptic-like microvesicles from PC12 cell
endosomes is dependent on AP-3 but apparently does not
require clathrin [45]. Double labelling immunolocalization
studies give variable results depending on the antibody
[3,21,23]. Methods that do not rely on the use of antibod-
ies, such as live cell imaging of cells coexpressing AP-3 and
clathrin subunits coupled to different fluorescent proteins,
should help to resolve this dispute. 

It seems clear that in yeast, at least, the AP-3 pathway does
not require clathrin, and consistent with this finding, yeast

β3 does not contain clathrin-binding consensus sequences.
The best candidate for a protein that might be taking the
place of clathrin in yeast is Vps41p, one of the few VPS
gene products involved in the trafficking of alkaline phos-
phatase as well as CPY. Vps41p resembles the clathrin
heavy chain in that it contains potential WD40 domains and
a clathrin heavy chain repeat, and it interacts with the car-
boxy-terminal hinge/ear domain of the yeast AP-3 δ subunit
[46•]. However, Vps41p is also implicated in the docking
and fusion of vesicles at the vacuole, suggesting that it may
act at both the budding and the fusion step [47•]. A Vps41p
homologue has been identified in mammals [48], so it will
be important to characterize this protein and determine
whether or not it colocalizes with AP-3. 

AP-3 in neurons
Another unresolved issue concerns the function of AP-3 in
neurons. It is striking that two of the AP-3 subunits have
neuronal-specific isoforms and that the mocha mouse,
which lacks functional AP-3 complexes in all of its tissues,
has severe behavioural abnormalities, whereas the pearl
mouse, which can assemble AP-3 complexes in its neurons
because of the presence of β3B, does not [31]. The
requirement for AP-3 in synaptic-like microvesicle bud-
ding from endosomes also suggests that AP-3 has a specific
role to play in neurons, especially since only the neuronal-
specific form of AP-3 is active in the in vitro budding assay
[49]. However, ultrastructural studies of the mocha mouse
[31] and of AP-3 deficient flies [29], do not show any obvi-
ous abnormalities in the nerve terminals, suggesting that
the absence of AP-3 only affects the biogenesis of a spe-
cialized population of synaptic vesicles. It is clear that
there is much that we do not understand about AP-3 func-
tion; however, the availability of AP-3 mutants in flies and
mammals gives us the unique opportunity of being able to
study the consequences of AP-3 deficiency in living multi-
cellular organisms. 

AP-4
The first hint to the existence of a fourth adaptor protein
complex came from the identification of a novel human
protein termed µ-ARP2 that was related to the µ subunits
of AP complexes [50]. Later studies identified three addi-
tional human proteins named ε, β4 and σ4 that were
homologous to the α/γ/δ, β and σ subunits, respectively, of
AP complexes [51•,52•]. Biochemical analyses showed that
ε, β4, σ4 and µ-ARP2 (renamed µ4) were components of a
novel heterotetrameric complex designated AP-4
([51•,52•]; Figure 1).

The phylogeny of the AP-4 complex differs from that of
the other three AP complexes. Genes encoding AP-4 
subunits or closely related homologues have been identi-
fied in organisms belonging to the animal (humans, mice
and chickens), plant (Arabidopsis thaliana) and protist
(Dictyostelium discoideum) kingdoms. Intriguingly, some
animals (C. elegans and Drosophila) and protists (S. cerevisiae)
lack orthologues of AP-4 subunits altogether. The 
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evolutionary and physiological significance of this unusual
pattern of expression remains to be elucidated.

In mammals, the four subunits of AP-4 are expressed in all
tissues and cells examined [51•,52•]. Immunofluorescence
microscopy analyses revealed that the AP-4 complex is
largely associated with the TGN, as demonstrated by its
colocalization with the TGN markers, TGN38 and furin
[51•,52•]. Treatment of cells with brefeldin A caused dis-
sociation of AP-4 from the TGN into the cytosol [51•,52•],
suggesting that recruitment of AP-4 to membranes, like
recruitment of AP-1, AP-3 and coatomer, is regulated by a
member of the ADP-ribosylation factor (ARF) family of
GTP-binding proteins. Immunoelectron microscopy fur-
ther refined the localization of AP-4 to non-clathrin-coated
vesicles in the area of the TGN [52•]. Consistent with the
latter finding, AP-4 could not be detected in preparations
of clathrin-coated vesicles [52•]. Moreover, the hinge
domains of the ε and β4 subunits lack consensus motifs for
clathrin binding present in other clathrin-associated pro-
teins. These observations suggest that AP-4 is most
probably part of a non-clathrin coat.

The low abundance of the AP-4 complex in most cells has
so far hampered further characterization of the structures or
molecules with which AP-4 associates in situ. Yeast two-
hybrid and in vitro binding assays have demonstrated that
µ4 binds YXXØ-type tyrosine-based sorting signals from

TGN38 [53] and the lysosomal membrane proteins lamp-1
[53], lamp-2 [54] and CD63 [52•], albeit with low affinity.
Screening of a combinatorial peptide library using the yeast
two-hybrid system showed that µ4 has characteristic prefer-
ences for residues surrounding the critical tyrosine, the
most notable being phenylalanine at positions –1 and +3
relative to the tyrosine [54]. The physiological meaning of
these preferences is still unclear. Placement of a µ4-specif-
ic tyrosine-based sorting signal onto the cytoplasmic tail of
a plasma membrane reporter protein resulted in targeting of
the chimera to the endosomal-lysosomal system [54], 
suggesting a role for AP-4 in this process. A more definitive
assessment of AP-4 function, however, will probably
require ablation of genes encoding AP-4 subunits in genet-
ically tractable organisms such as mice or D. discoideum.

GGAs
The GGAs (Golgi-localized, γ ear-containing, ARF-binding
proteins) were identified independently by a number of
groups using different approaches, including, searching
through DNA databases for novel proteins with homology to
adaptor subunits [55•–57•] or containing a VHS domain (see
below) [58•], screening a yeast two-hybrid library for proteins
that bind to activated ARF [59•] or looking for genes in yeast
that accentuate the growth defects caused by temperature-
sensitive clathrin heavy chain [60•]. Although the GGAs
have a carboxy-terminal domain homologous to the γ-adaptin
ear, they are otherwise different from γ-adaptin and other

Figure 2

Schematic representation of the GGAs and
their interaction partners. The GGAs comprise
four domains designated VHS, GAT, hinge
and ear. The VHS domain (blue) of the
mammalian GGAs binds
acidic–cluster–dileucine signals present in the
cytoplasmic domains of sorting receptors
such as the cation-dependent mannose 6-
phosphate receptors and sortilin. The GAT
domain (yellow) is responsible for the
recruitment of the GGAs to the TGN, which is
at least in part due to interaction with the
GTP-bound form of ARF. The hinge domain
(black) mediates interactions with the terminal
domain (TD) of the clathrin heavy chain
(CHC), whereas the ear domain (red) binds
accessory proteins thought to regulate coat
formation or vesicle budding. CLC, clathrin
light chain. Adapted from [71•].
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adaptor subunits. They appear by both gel filtration and
ultracentrifugation to be monomeric [55•,56•], and they have
a unique four-domain structure consisting of a VHS (VVps27p,
HHrs, SSTAM) domain, a GAT (GGGA and TTOM1) domain, a
hinge-like domain and an ear domain (Figure 2). 

GGA mutants 
Like the heterotetrameric adaptor complexes, the GGAs are
highly conserved, and their genes have been identified in
mammals, S. cerevisiae, Drosophila and C. elegans. Three GGA
genes are ubiquitously expressed in mammals, and their
three protein products colocalize at the TGN [55•–57•].
Insights into GGA function came initially from studies using
yeast. S. cerevisiae expresses two GGA genes, GGA1 and
GGA2, both of which need to be deleted to get a clear-cut
phenotype (deleting GGA2 alone gives a weak phenotype,
but this is thought to be because it is expressed at 5–10 fold
higher levels than GGA1 [60•]). Vacuolar protein sorting is
moderately affected in GGA-deficient yeast: more than 50%
of the CPY is secreted instead of retained intracellularly, and
the electrophoretic mobility of the secreted CPY indicates
that it has been incompletely processed [55•,56•,61•]. The
GGAs are also required for normal sorting of the prevacuo-
lar syntaxin Pep12p [62•] and the α-factor processing
enzyme Kex2p, which normally cycles back and forth
between the late Golgi and an endosomal compartment
[63•]. Together, these observations point to a role for the
GGAs in TGN to endosome trafficking. 

GGA domains
Further insights into GGA function have come from stud-
ies of their four individual domains and their binding
partners. At the amino terminus of all of the GGAs is a
VHS domain. VHS domain-containing proteins have been
extensively studied and the crystal structures of two VHS
domains have been solved [64,65], but until recently noth-
ing was known about VHS domain function. However, two
groups have now independently shown that the VHS
domains of mammalian GGAs bind to the cytoplasmic
domains of three proteins that traffic from the TGN to
endosomes: sortilin, the cation-independent mannose
6-phosphate receptor and the cation-dependent mannose
6-phosphate receptor [66•,67•,68]. The TGN to endosome
sorting signal for all three proteins is a cluster of negatively
charged amino acids followed by a dileucine [66•,69•], and
this motif is also responsible for binding to GGAs
[66•,67•,68]. Overexpressing truncated GGA constructs
consisting of just the VHS and GAT domains causes man-
nose 6-phosphate receptors to become trapped in the
TGN [67•,70,71]. Other dileucine signals implicated in
trafficking are not preceded by acidic clusters and presum-
ably are sorted differently (e.g., by binding to the β subunit
of the AP-1 complex [10]). In addition, different GGA
VHS domains have different binding preferences [67•],
and VHS domains from other proteins, and even from
yeast GGAs, are likely to participate in other types of pro-
tein–protein interactions, as other mammalian VHS
domains are unable to bind the acidic–cluster–dileucine

motif [67•] and none of the yeast proteins that are sorted
by GGAs appears to have this type of signal. The sequence
FSDSPEF facilitates GGA-mediated sorting of Pep12p in
yeast and thus is a good candidate for another type of
VHS-domain-binding partner [62•]. 

Downstream from the VHS domain is the GAT domain.
The GAT domain is responsible for ARF binding in both
mammalian and yeast GGAs [56•,59•,61•], and in mam-
malian cells it is both necessary and sufficient for localising
the GGAs to Golgi membranes [56•]. Mutations in the
GAT domain that abolish ARF binding also prevent such
constructs from being recruited onto the membrane [71•].
Once the GGA has bound to the ARF, ARF-GAP activity
is inhibited, stabilizing the association of the ARF–GGA
complex with the membrane [71•]. When GAT domains
are expressed at extremely high levels, other coats whose
membrane association is ARF-dependent become cytoso-
lic, presumably because all the available ARF is occupied
by the GAT constructs [56•,71•]. All of these findings indi-
cate that ARF binding and membrane recruitment are
intimately coupled. However, there must be additional
factors involved in the recruitment of GGAs onto mem-
branes, because the distribution of GGAs is normally
restricted to the TGN, whereas other ARF-dependent
coats can have quite different distributions including the
cis-Golgi/intermediate compartment and endosomes. 

The hinge domain is the least well conserved among the
GGAs in both length and amino acid sequence. However,
its amino acid content is similar to that of the adaptin hinge
domains, indicating that it too may be a flexible linker con-
necting the amino- and carboxy-terminal domains. In
addition, all of the GGA hinge domains contain potential
clathrin-binding sequences. Initial reports suggested that
the GGAs might not be clathrin-associated, primarily
because they were not detectable in purified clathrin-coated
vesicles [55•]. However, it was subsequently shown that
when cells are broken open the GGAs detach from the
membrane, which could account for their absence from
such preparations [63•]. More recent studies have shown
that GGAs and clathrin interact in vitro [71•], that they colo-
calize at both the light and the electron microscope level in
mammalian cells [63•,71•], that GGAs can recruit clathrin
onto membranes [71•], that GGAs and clathrin act coopera-
tively in yeast [60•] and that GGAs and clathrin can be
coimmunoprecipitated from yeast cell extracts [60•]. The
identification of the GGAs as potential clathrin adaptors
helps to explain the apparent paradox that in yeast it is 
possible to delete genes encoding subunits from all three
AP complexes without affecting clathrin-coated vesicle for-
mation or clathrin-mediated protein sorting [70,72,73,74].

At the carboxy-terminal end is the γ-adaptin ear homology
domain. By analogy with the α-adaptin ear, it is likely that
both the GGA ear and the γ ear recruit accessory proteins
onto the membrane. So far, only a single binding partner
has been definitively identified for the γ ear, the EH
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domain-containing protein γ-synergin [12]. The function
of γ-synergin is still unknown, although it can bind to the
cytoplasmic domain of SCAMP1, an integral membrane
that shuttles between the plasma membrane, endosomes
and the TGN [75]. γ-synergin also shows limited binding
to the GGA ears in vitro [55•,57•], and colocalization of
γ-synergin and GGAs has been reported in cells expressing
tagged versions of both proteins [57•]. However, colocal-
ization between endogenous GGAs and γ-synergin does
not appear to be significant [57•], and, in addition, γ-syner-
gin coimmunoprecipitates with the AP-1 complex but not
with GGAs [12,55•]. GST pulldowns indicate that the
GGA ears bind to at least three other proteins that also
bind to the γ ear, and identification of these proteins is cur-
rently under way [55•]. Somewhat surprisingly, however,
deletion studies in yeast indicate that although the VHS
and GAT domains are absolutely required for GGA func-
tion, GGAs lacking their ear domains are at least partially
functional [63•]. Replacing the GGA ear with the γ-adaptin
ear fully restores function [63•], suggesting that in yeast as
well as in mammals, the GGA and γ ears share some of the
same binding partners.

Together, these studies indicate that the GGAs are 
functionally very similar to conventional clathrin adaptors,
but they are monomeric instead of heterotetrameric. In the
heterotetrameric adaptor complexes, cargo selection,

membrane localization, clathrin binding and accessory pro-
tein recruitment have been attributed to distinct subunits,
whereas in the GGAs these same four functions appear to
be performed by the VHS, GAT, hinge and ear domains
respectively. In yeast, deleting AP-1 subunit genes together
with GGA genes exacerbates the missorting phenotype,
even though deleting AP-1 on its own has no effect, indi-
cating that the two adaptors can to some extent substitute
for each other [60•,63•]. 

The importance of the GGAs in TGN to endosome traf-
ficking has now been established beyond any doubt, and
the ability of the GGAs to interact with cargo that had pre-
viously been assumed to use the AP-1 pathway raises the
question of why the cell needs both types of adaptors.
Possible explanations include different cargo preferences,
different acceptor compartments (e.g., the AP-1 pathway
may be from the TGN to early endosomes and the GGA
pathway from TGN to late endosomes) [62•], different
donor compartments (e.g., different subdomains of the
TGN) or even different directions (e.g., the GGAs may
facilitate traffic out of the TGN whereas AP-1 may be more
important for retrograde traffic back to the TGN) [35]. 

Stoned B and related proteins
The founding member of another family of adaptor-related
proteins is a product of the Drosophila stoned gene termed

Figure 3

Schematic representation of members of the
stoned B family and their interactions with
components of the endocytic machinery.
(a) The scheme depicts the domain
organization of Drosophila stoned B,
C. elegans UNC-41, human stonins 1 and 2,
and the mammalian µ2 subunit of the AP-2
complex. The different domains are designated
proline-rich domain (PRD), stonin-homology
domain (SHD), µ-homology domain (MHD)
and β-binding domain (BBD). The approximate
positions of NPF motifs and the number of
amino acids in each protein are indicated.
(b) Human stonin 2 is shown interacting with a
member of the synaptotagmin family of protein
via MHD–C2B domain interactions and with
intersectin and Eps15 via NPF–EH domain
interactions. The SH3 domains of intersectin in
turn mediate an interaction with dynamin,
whereas a domain containing multiple DPF
motifs in Eps15 mediates interactions with the
α-adaptin subunit of AP-2. CC, coiled-coil
domain; Dbl, disabled; PH, pleckstrin
homology domain.
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stoned B ([76]; Figure 3a). Stoned mutants were originally
isolated in a screen for temperature-sensitive paralytic
flies, which exhibited uncoordinated wing and leg move-
ments indicating neurological dysfunction [77]. The stoned
gene displays synthetic lethal interactions with shibire,
another paralytic gene that encodes a dynamin homologue
involved in endocytosis at the synapse [77,78•]. In addi-
tion, presynaptic terminals of stoned mutants display
impaired uptake of the dye FM1-43 [78•,79•] and deple-
tion of synaptic vesicles [80]. All of these observations
indicate that the neurological deficiencies of stoned
mutants are probably due to defects in endocytic recycling
of synaptic vesicle membranes.

The molecular characterization of stoned gene products
provides additional support for their possible involvement
in endocytosis. Strikingly, the stoned gene produces a
dicistronic message encoding two proteins termed stoned
A and stoned B [76]. Stoned A has no homology to any
other known protein, although it contains five DPF (single
amino acid code) motifs [76,81] that could potentially
interact with the ear domain of α-adaptin [82]. Stoned B,
on the other hand, exhibits limited homology to the signal-
binding domain of AP µ subunits ([76]; Figure 3a). A
homologue of stoned B is encoded by the C. elegans unc-41
gene, mutations of which also result in an uncoordinated
phenotype ([80]; Figure 3a). In addition, two homologues
of stoned B, termed stonin 1 and stonin 2, have been
recently described in humans and mice ([83,84•];
Figure 3a). No homologues exist in S. cerevisiae. The
dicistronic Drosophila stoned mRNA is most abundant in
the head, indicative of preferential expression in the cen-
tral nervous system [76]. The human stonin 1 and stonin 2
mRNAs, on the other hand, seem to be uniformly
expressed in most tissues and cells [84•].

All members of the stoned B family share a similar modu-
lar structure, consisting of a variable amino-terminal
domain enriched in proline and serine residues (i.e., pro-
line-rich domain or PRD), a conserved domain specific to
this family (i.e., stonin-homology domain or SHD) and a
carboxy-terminal domain homologous to the signal-bind-
ing domain of the µ subunits of AP complexes (i.e.,
µ-homology domain or MHD) (Figure 3a). Although not
conserved at the amino acid sequence level, the PRDs of
some of these proteins contain potential binding sites for
components of the clathrin endocytic machinery. For
example, the proline-rich domains of Drosophila stoned B
[80] and human stonin 2 (but not stonin 1) [84•] contain
seven and two NPF motifs, respectively. Thus, of the two
human stonins, stonin 2 is the one that most resembles
Drosophila stoned B. NPF (single amino acid code) motifs
interact with EH domains of proteins such as eps15, 
γ-synergin and intersectins [75,85]. In fact, human stonin 2
interacts directly with eps15 and intersectin 1 via NPF-EH
domain interactions [84•]. These interactions allow indirect
linkage of stonin 2 to AP-2 [84•]. The PRD of the C. elegans
homologue lacks NPF motifs but contains four DPF

motifs that could potentially mediate direct binding to the
ear domain of the α subunit of AP-2 [82]. 

Despite the presence of a µ-homology domain in stoned B
and related proteins, stonin 1 and stonin 2 are not part of AP
complexes, nor do they appear to bind canonical tyrosine-
based or dileucine-based sorting signals [84•]. Instead, the
µ-homology domains of both stoned B [86•] and stonin 2
[84•] bind members of the synaptotagmin family of proteins,
more specifically to their C2B domains. Synaptotagmins are
membrane-anchored proteins proposed to function as dock-
ing sites for AP-2 via interactions with the AP-2 α and µ2
subunits [87,88]. By analogy, synaptotagmins could recruit
stonin 2 to the plasma membrane (Figure 3b). In turn,
stonin 2 could serve as a linker for recruitment of eps15,
intersectins and their respective binding partners (e.g.,
AP-2, dynamin and clathrin) (Figure 3b). Overexpression of
stonin 2 in non-neuronal cells impairs recruitment of AP-2 to
the plasma membrane and receptor-mediated endocytosis
[84], providing additional evidence for the involvement of
stonin 2 with the endocytic machinery. Thus, stonin 2 and
AP-2 appear to participate in similar (and perhaps common)
networks of protein interactions contributing to the assem-
bly of the endocytic machinery at the plasma membrane.

Recent studies of Drosophila stoned mutants have suggest-
ed an alternative explanation for the physiological role of
synaptotagmin–stoned B-interactions. These studies have
shown that synaptotagmin I is mislocalized and destabilized
in stoned mutants [80]. In addition, transgenic overexpres-
sion of synaptotagmin I in stoned flies restores viability and
endocytic trafficking to normal levels [79•]. These observa-
tions suggest that a major role of stoned B may be to recruit
or maintain synaptotagmin I at sites of endocytosis so that it
can carry out its roles in synaptic vesicle biogenesis. 

Conclusions
Over the past few years, some of our previous ideas about
clathrin-coated vesicles have had to be modified. Originally
it was assumed that the only components of the coats were
clathrin and adaptor complexes, either AP-1 or AP-2. Now
we know that there are a number of adaptor-associated pro-
teins that regulate clathrin-coated vesicle formation. We
also know that there are two additional types of adaptor
complexes, AP-3 and AP-4, which are closely related to
AP-1 and AP-2, even though they may be able to function
independently of clathrin. Two novel monomeric proteins
with adaptor-like domains have also been identified:
GGAs, which may function as clathrin adaptors in their own
right, and stoned B and its homologues, which probably
participate in the AP-2 pathway. These new adaptor-related
proteins and complexes all have distinct cargo preferences,
and they also for the most part have distinct distributions
within the cell; thus, they could potentially be used to sort
different types of cargo on different post-Golgi trafficking
pathways. Further studies will be needed to identify the
full set of cargo molecules sorted by each adaptor-related
protein, as well as to establish the exact subcellular 
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localization of these proteins and the molecular mecha-
nisms in which they are involved. Eventually, this will lead
to an integrated view of how adaptors and adaptor-related
proteins control protein sorting in the late secretory and
endocytic pathways.
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